1,3-Dipolare Cycloadditionen von 3,4-Dihydro-6,7dimethoxyisochinolinium-N-methoxycarbonylmethylid mit N-substituierten Maleinimiden

Gábor Tóth^{1, *}, Thomas Tischer², Zoltán Bende³, Gabriella Szejtli² und László Tőke²

- ¹ Technische Analytische Forschungsgruppe, Ungarische Akademie der Wissenschaften, Technische Universität Budapest, H-1111 Budapest, Ungarn
- ² Lehrstuhl f
 ür Technologie der Organischen Chemie, Technische Universit
 ät Budapest, H-1521 Budapest, Ungarn
- ³ REANAL, Fabrik für Laborchemikalien, H-1441 Budapest, Ungarn

1,3-Dipolar Cycloadditions of 3,4-Dihydro-6,7-dimethoxyisoquinolinium-N-methoxycarbonylmethylide with N-Substituted Maleimides

Summary. 1,3-Dipolar cycloadditions of 3,4-dihydro-6,7-dimethoxyisoquinolinium-N-methoxycarbonylmethylide **2** with N-phenyl- and N-methylmaleimide (**3** and **4**) have been investigated. Cycloadducts of the *endo-* and *exo-*type were formed, the structure elucidation and conformational analysis of which has been performed by NMR methods.

Keywords. Pyrrolo[2,1-a]isoquinolines; Azomethine ylides; NMR; Stereochemistry.

Einleitung

N-substituierte Maleinimide gehören zu den reaktionsfähigsten Dipolarophilen und sind häufig Gegenstand von Untersuchungen auf dem Gebiet der 1,3-dipolaren Cycloadditionen [1, 2]. In unseren vorangegangenen Mitteilungen haben wir die 1,3-dipolaren Cycloadditionen des 3,4-Dihydro-6,7-dimethoxyisochinolinium-N-methoxycarbonylmethylids 2 mit Maleinsäure- und Fumarsäureestern untersucht [3, 4]. Dabei konnten wir feststellen, daß Dimethylmaleat nur ein Produkt vom *endo*-Typ lieferte, während die Reaktion mit Dimethylfumarat zu einem *endo/exo*-Isomerengemisch führte.

Ergebnisse und Diskussion

Das aus dem Isochinoliniumbromid 1 mit Triethylamin freigesetzte Azomethinylid 2 wurde mit N-Phenylmaleinimid 3 und mit N-Methylmaleinimid 4 umgesetzt (Schema 1). In beiden Fällen gelangten wir zu einem Gemisch von *endo/exo*-Produkten (5 a, b bzw. 6 a, b), die von der *cisoiden* Form des Dipols abgeleitet werden können. Das Verhältnis von 5 a zu 5 b sowie 6 a zu 6 b betrug 2:1 und änderte sich auch nicht, wenn in siedendem Chloroform gearbeitet wurde. So ist das *endo/exo*-

Verhältnis unabhängig sowohl vom N-Substituenten des Maleinimids als auch von der Temperatur.

In früheren Untersuchungen haben wir gezeigt, daß zur Strukturaufklärung analoger Hexahydropyrrolo[2,1-a]isochinolin-3-carbonsäure-methylester die Bestimmung der relativen Konfigurationen der Chiralitätszentren C(1), C(2), C(3) und C(10b) nicht ausreichend ist, sondern auf Grund des Vorhandenseins des Brückenkopf-N(4)-Atoms mit dem Auftreten eines $trans \rightleftharpoons cis-1 \rightleftharpoons cis-2$ -Konformationsgleichgewichts zu rechnen ist [3, 5, 6].

Wir haben die charakteristischen NMR-Parameter bestimmt, die die semiquantitative Beschreibung des aktuellen Konformatonsgleichgewichtes ermöglichen [6]. Veränderungen der Konfiguration an C(10b) verursachen eine grundlegende Verschiebung des Konformationsgleichgewichts, während Veränderungen an C(1) und C(2) die Population der einzelnen Konformeren nur geringfügig beeinflussen [6, 7]. Für das Studium der Verbindungen 5a/5b und 6a/6b war die Berücksichtigung der in Schema 2 gezeigten Konformationsgleichgewichte notwendig.

Obwohl Racemate vorliegen, wurde zur besseren Veranschaulichung der Konformations- und Konfigurationsverhältnisse immer dasjenige Enantiomer dargestellt, welches an C(3) eine S-Konfiguration besitzt, das heißt, die dort befindliche Estergruppe besetzt die α -Position. Wie aus dem Formelbild ersichtlich ist, führt die *cis*-1 \rightleftharpoons *cis*-2-Umwandlung zum Positionswechsel der axialen und äquatorialen Methylenprotonen 5-H₂ und 6-H₂, daher wurde zur Zuordnung dieser Protonen die α/β -Nomenklatur angewendet.

Im Falle der *endo*-Struktur zeigt bereits die Betrachtung eines Dreiding-Modells, daß in den *cis*-1- und *cis*-2-Konformeren sehr ungünstige sterische Wechselwirkungen auftreten und so ein Überwiegen des *trans*-Konformeren zu erwarten ist.

Zur Zuordnung der NMR-Signale wurde von den bereits früher abgeleiteten Zuordnungen der verschiedenen 1,2-disubstituierten Hexahydro-pyrrolo[2,1-

Schema 2

a]isochinolin-3-carbonsäure-methylester [3, 6] sowie von den Ergebnissen der 1D-NOE-Differenzmessungen, der 2D-Kohlenstoff-Proton-Korrelationsspektren und der 1D- und 2D-semiselektiven INEPT-Untersuchungen [8–10] ausgegangen. Die charakeristischen ¹H- und ¹³C-NMR-Daten wurden in den Tabellen 1–4 zusammengefaßt.

In den ¹H-NMR-Spektren der Cycloaddukte erscheinen die Signale des Pyrrolidinringes getrennt. Dagegen konnten die chemischen Verschiebungen von Isomer 5 a wegen Überlappung der 1-H- und 2-H-Signale mit den Signalen der MeO-Gruppen nur mit Hilfe eines 2D-Kohlenstoff-Proton-Korrelationsspektrums bestimmt werden. Es ist charakteristisch, daß bei den Isomeren 5a und 6a das 3-H-Signal als Singulett auftritt ($J_{2,3}$ 0 Hz), was auf einen Diederwinkel von ca. 90° zwischen 2-H und 3-H hindeutet. Eine solche Anordnung kann sich nur bei der endo-Struktur im trans- oder cis-2-Konformer ausbilden. Ausgehend von den bereits erwähnten sterisch ungünstigen Wechselwirkungen im letzteren Konformer kann davon ausgegangen werden, daß Verbindungen 5a und 6a endo-Isomere sind, in denen erwartungsgemäß das trans-Konformer überwiegt. Die Kopplungskonstanten dieser Verbindungen wurden mit 6.6 bzw. 7.4 Hz gemessen, was einem Diederwinkel von ca. 150° oder 30° entsprechen kann. Da bei der Bestrahlung von 10b-H im 1D-NOE-Spektrum von 6a nicht nur beim 1-H-Signal eine starke Intensitätszunahme auftritt, sondern auch für 2-H ein positiver NOE gefunden werden kann, befinden sich diese Protonen offensichtlich auf der gleichen Seite des Pyrrolidinringes, d. h. die Struktur vom endo-Typ konnte direkt bewiesen werden. Die räumliche Nähe von 10b-H und 2-H wurde auch durch das inverse Experiment

Tabel	le 1. ¹ H-N	IMR-Date	n der Cycl	oaddukte i	n CDCl ₃ (ð-Werte, t	rifluoressig	gsäure-ind	uzierte Δδ.	Werte, J(I	H,H)-Kop	plungskor	istante in H	N
	1-H	2-H	3-H	$5-H_{a}$	5-H _β	6-H _a	6-H _β	H-7	10-H	10b-H	8,9-OM	0	COOMe	R
5a	3.82	3.77	4.34	2.82 – 2.96	3.17	2.82 – 2.96	2.66	6.54	6.92	4.51	3.76	3.87	3.80	7.09; 7.36; 7.28
Δδ 5 h	3.59	3.78	0.60 4.21	3.03	3.21	2.93	2.63	6.60	7.12	1.22 4 75	3,78	3,89	3 86	7 34 - 7 48 - 7 40
Δδ 6.9	3.62	3.53	0.79	2.70-	3.04	2.70 -	2.53	6.47	6.85	0.98 4.34	3.69	3.89	3 75	2.79
E 1				2.90		2.90				}		2		
∆ð 6 b	3,44	3 57	0.74 4.06	3,12	3.27	2.92	2.51	6.56	691	1.27 4 74	3 81	3 91	3 86	۲U ۲
Δδ			0.69							0.87	2			-
		$J_{ m 10b,1}$			$J_{1,2}$		$J_{2,2}$	~						
5 a		6.6					0							
5 b		4.4			8.8		8.5							
6a		7.4			7.7		0							
6b		3.0			8.8		8.0	_						

532

	Bestrahltes Proton	
5 a	3-Η 5-Η _β 10-Η 10b-Η	$\begin{array}{l} 5\text{-}\mathrm{H}_{\beta} \ (3.2), \ 5\text{-}\mathrm{H}_{\alpha} \ (1.2), \ 2', 6'\text{-}\mathrm{H} \ (1) \\ 3\text{-}\mathrm{H} \ (6.7), \ 5\text{-}\mathrm{H}_{\alpha}, 6\text{-}\mathrm{H}_{\beta} \ (24.3), \ 2', 6'\text{-}\mathrm{H} \ (1) \\ 10\text{b}\text{-}\mathrm{H} \ 5, 0), \ 9\text{-}MeO \ (15.0) \\ 1\text{-}\mathrm{H} \ (7.7), \ 5\text{-}\mathrm{H}_{\alpha} \ (3.5), \ 10\text{-}\mathrm{H} \ (4.4) \end{array}$
5 b	1-H 3-H 10b-H	10-H (7.8), 10b-H (2.6) 2-H (3.9), 5-H _β (1.5), 6-H _β (6.3%) 1-H (1.1), 10-H (3.4%)
6 a	1-Η 2-Η 5-Η _β 10b-Η	10-H (4.9), 10b-H (9.4) 3-H (4.0), 10b-H (3.3) 3-H (7.6), 5-H _α ,6-H _β (22.2) 1-H (8.0), 2-H (2.0), 5-H _α (3.0), 10-H (3.9)
6 b	1-H 2-H 3-H 10b-H	2-H (3), 10-H (11.3), 10b-H (2.3) 1-H (5), 3-H (6.6) 2-H (8.1), $6-H_{\beta}$ (4.9) 1-H (2.7), $5-H_{\alpha}$ (2.9), 10-H (3.2)

Tabelle 2. Ergebnisse der 1D-NOE-Messungen der Cycloaddukte

bewiesen, bei der Bestrahlung von 2-H trat beim Signal von 10b-H 33.3% Intensitätszunahme auf. Im Falle von **5 a** läßt die Signalüberlappung von 2-H die NOE-Messung nicht zu, aber die Ähnlichkeit der Spektren (**5 a/6 a**) sowie der bei Einstrahlung auf 10b-H am 1-H-Signal gemessene hohe (7.7%) NOE-Wert lassen keinen Zweifel in bezug auf die *endo*-Struktur. In den *exo*-Isomeren **5 b** und **6 b** befinden sich 10b-H und 1-H auf entgegengesetzten Seiten des Pyrrolidinringes, und in Übereinstimmung mit der größeren Entfernung zwischen ihnen sind die entsprechenden NOE-Werte auch bedeutend kleiner (s. Tabelle 2).

Die Protonen 5-H_a und 6-H_β des Tetrahydro-pyridinringes sind im allgemeinen stark gekoppelt und überlappt, und ihre Zuordnung beruht auf Kohlenstoff-Proton-Korrelationsmessungen. Eine Ausnahme bildete nur das Isomer **6b**, in dem die Auffächerung der Signale entsprechend groß ist, so daß die Kopplungskonstanten $J_{5\alpha,6\beta} = 12$ Hz und $J_{5\alpha,6\beta} = 1.9$ Hz in erster Näherung abgelesen werden können. Daraus kann auf Grund unserer früheren Untersuchungen geschlossen werden [6], daß der Anteil des Isomers *cis*-2 im Konformationsgleichgewicht sehr gering ist. Im Falle der Isomeren **5b** und **6b** trat bei Bestrahlung von H-3 im NOE-Differenzspektrum eine bedeutende Intensitätszunahme beim Signal 5-H_β auf, was darauf hinweist, daß das *cis*-1-Konformer dominant ist.

Zur Bestimmung des *trans*- oder *cis*-Charakters der B/C-Ringverknüpfung konnten in einigen Fällen Protonierungsshifts erfolgreich angewendet werden, ferner die entlang der NC-H-Bindung auftretenden ${}^{1}J(H, C)$ -Kopplungskonstanten [3, 5, 6]. Bilden die C-H-Bindung und das freie Elektronenpaar des Stickstoffs einen Diederwinkel von 180° (antiperiplanar), so zeigt als Ergebnis der zwischen ihnen auftretenden Wechselwirkungen der Protonierungsshift $\Delta\delta$ einen hohen Wert, und die Kopplungskonstante ${}^{1}J(C, C)$ ist ca. 8-10 Hz kleiner als im Falle der *gauche*-Anordnung. Der an den 10b-H-Signalen gemessene $\Delta\delta$ -Wert beträgt bei

	5 a	5 b	6 a	6 b
1	46.7	51.2	46.5	50.8
2	47.8	47.2	47.6	47.3
3	66.9	64.4	66.3	62.5
5	45.5	44.4	45.3	43.3
6	29.4	24.6	29.4	22.6
6a	126.2	125.4	126.3	125.5
7	110.9	111.2	110.9	111.3
8	147.6	147.9	147.6	148.0
9	146.4	147.9	146.4	148.2
10	111.2	109.3	111.2	109.1
10 a	123.6	126.8	123.9	126.5
10 b	62.2	63.0	61.8	63.2
MeO	55.5	55.8	55.5	55.9
	55.7	55.9	56.0	56.0
CO	170.2	170.0	170.3	169.8
1				
OMe	51.8	52.1	51.8	52.3
1-CO	174.3	176.5	175.5	176.0
2-CO	176.6	175.2	177.6	177.4
C _{ipso}	131.6	131.8		
Cortho	126.1	126.5		
C _{meta}	128.8	129.1		
C_{para}	128.3	128.6		
N <i>Me</i>			25.0	25.4
$^{1}J(3-H,C)$	148	143	148	142
$^{1}J(10b-H,C)$	137	145	137	145

Tabelle 3. ¹³-C-NMR-Daten der Cycloaddukte in $CDCl_3$ (δ -Werte, J in Hz)

den Isomeren **5a** und **6a** 1.22 und 1.27 ppm in Übereinstimmung mit dem *trans*-Charakter der B/C-Ringverknüpfung, dagegen konnte im Falle der *exo*-Isomeren **5b** und **6b** ein Wert von nur 0.98 bzw. 0.87 ppm gemessen werden. Die *trans*-B/C-Ringverknüpfung der *endo*-Verbindungen und die *cis*-1-Verknüpfung der *exo*-Isomeren spiegelt sich auch in den Werten von 137 Hz bzw. 145 Hz für die Kopplungskonstanten ${}^{1}J(10b$ -H,C) wider. In Übereinstimmung damit, daß sich im Pyrrolidinring die vollständige antiperiplanare Anordnung von 3-H und dem freien Elektronenpaar des Stickstoffs im *cis*-1-Konformer des *exo*-Isomers nicht ausbilden kann oder daß neben *cis*-1- auch größere Mengen des *trans*-Konformers vorkommen, ist die Abweichung der Werte in den Isomeren für ${}^{1}J(H-3,C)$ kleiner; die gemessenen Werte von 148 Hz und 143/142 Hz weichen jedoch deutlich ab, entsprechend den verschiedenen Konformationsverhältnissen der *endo*- und *exo*-Isomeren.

Die große Ähnlichkeit der ¹³C-NMR-Spektren der Isomeren **5** a/6a sowie **5**b/6b beweist, daß die Konformationsverhältnisse der beiden Isomerenpaare im wesentlichen dieselben sind. Dagegen zeigt die Gegenüberstellung der *exo-* und *endo*-Isomeren, daß in den δ_{C} -Werten charakteristische Abweichungen auftreten, so z. B.

534

Abb. 1. 2 D-semiselektive INEPT 10b-H

bei C(1), C(3), C(6), C(10), C(10a). In unseren früheren Untersuchungen haben wir nachgewiesen, daß die chemische Verschiebung von C(6) den *trans*- oder *cis*-1-Charakter der B/C-Ringverknüpfung empfindlich widerspiegelt, denn im ersteren Falle beobachtet man eine chemische Verschiebung von $\delta \simeq 29$, während bei letzterem, als Ergebnis der γ -gauche-Wechselwirkung zwischen C(6) und C(3), ein um 5-6 ppm kleinerer Wert zu erwarten ist [6]. Der gemessene Wert von $\delta = 29.4$ bei den Isomeren **5a** und **6a** stimmt mit dem begünstigten Auftreten der *trans*-Konformeren überein. In den Isomeren **5b** und **6b** beobachtet man für C(6) $\delta = 24.6$ bzw. 22.6. Auf Grund des letzteren extremen Wertes kann davon ausgegangen werden, daß **6b** fast vollständig in Form des *cis*-1-Konformers vorkommt und auch bei **5b** neben dem *cis*-1- nur ca. 30% *trans*-Konformer auftritt. Zu einem ähnlichen Ergebnis gelangten wir, wenn wir von den chemischen Verschiebungen von C(3) ausgingen, und zwar zeigt sich in **6b** eine Hochfeldverschiebung von 3.8 ppm gegenüber **6a**, während dieser Wert bei **5b** nur 2.5 ppm gegenüber **5a** beträgt (s. Tabelle 3).

Die Zuordnung der quaternären Kohlenstoffatome wurde mit semiselektiven INEPT-Messungen, optimiert auf 7 Hz, bestimmt [8]. Da bei aromatischen Ringen die Kopplungskonstante $J(C, H_{meta})$ ca. 7 Hz beträgt, wurde die Identifizierung der Signale von C(8) und C(10a) durch den von 10-H ausgelösten Polarisation-Transfer ermöglicht. Die bei der Bestrahlung von 10b-H durchgeführten semiselektiven INEPT-Messungen haben die Atome C(10a) und 1-CO hervorgehoben. Diese Messung erwies sich nicht nur zur Signalzuordnung, sondern auch zur Bestimmung der Raumstruktur als nützlich. Im Pyrrolidinring der *endo*-Isomeren treten nur zwischen 10b-H und dem geminalen Atom C(1) Kopplungen auf, zu C(2) und C(3) sind

	5 a	5 b	6 a	6 b
10-Н 10b-Н	C(6a), C(8), C(10b) C(1), C(10a), 1-CO	C(6a), C(8), C(10b) C(1), C(2), C(3),	C(6a), C(8), C(10b) C(1), C(10a), 1-CO	C(6a), C(8), C(10b) C(1), C(2), C(3),
7-H		C(10a), 1-CO		C(10a), 1-CO C(6), C(9), C(10a)
J(10b-H,1-CO)	7.4 Hz	4.8 Hz		
J(10b-H,C(10a))	4.4 HZ	4.0 Hz		
J(10b-H,C(6a))	1.7 Hz	2.2 Hz		
J(10b-H,C(3))		4.2 Hz		
J(10b-H,C(1))	2.2 Hz	1.6 Hz		
J(10b-H,C(2)		3.0 Hz		

Tabelle 4. H – C-Korrelationen aus den 1D-semiselektiven INEPT-Messungen der Cycloaddukte und J(H-10b, C)-Kopplungskonstante aus der 2D-Version für **5a** und **5b**

diese nicht meßbar. Auf Grund der heteronuklearen C, H-Karplus-Gleichung [11] kann geschlossen werden, daß zwischen beiden letzteren Kohlenstoffatomen und 10b-H ein Diederwinkel von ca. 90° existiert, was mit der *trans*-Konformation der *endo*-Verbindungen übereinstimmt. Im Falle der Verbindungen **5**b/6b erscheinen in den unter Einstrahlung auf 10b-H registrierten semiselektiven INEPT-Spektren neben dem Signal von C(1) auch die von C(2) und C(3). Die selektive Bestimmung der Kopplungskonstanten J(H-10b,C) wurde durch 2D-semiselektive INEPT-Messungen [9, 10] ermöglicht (Tabelle 4). Die im Spektrum von **5**b (Abb. 1) gemessenen Kopplungskonstanten von 3.0 Hz und 4.2 Hz zwischen 10b-H und C-2 und C-3 zeigen, daß das *cis*-1-Konformer überwiegt.

Dank

Wir danken Herrn Prof. G. Snatzke für die Diskussion. G. T. dankt der Ungarischen Akademie der Wissenschaften für die finanzielle Unterstützung des OKTA-Programms und der Alexander-von-Humboldt-Stiftung für einen Forschungsaufenthalt (Ruhr-Universität Bochum).

Experimenteller Teil

Die Schmelzpunkte wurden mit einem Gallenkamp-Apparat bestimmt. Zur Aufnahme der IR-Spektren diente ein Gerät Specord 75. Die NMR-Spektren wurden mit einem Gerät Bruker AC-250 bei 25 °C angefertigt. Die chemischen Verschiebungen wurden als δ -Werte angegeben. Bei den 1D-Messungen wurden für den FID 32 K Datenpunkte verwendet. Die Wartezeit betrug bei den homonuklearen 1D-NOE-Messungen 3 Sekunden. Zu den NOE- und 2D-C/H-Korrelationsmessungen wurde das Bruker-Software-Programmpaket benutzt. Die Größe der Datenkartei betrug bei den Korrelationsmessungen 1 K × 1 K und bei den 2D-semiselektiven INEPT-Messungen 8 K × 32 W.

Isomere 1,2,3,5,6,10b-Hexahydro-8,9-dimethoxy-3-methoxycarbonyl-N-phenyl-pyrrolo[2,1-a]isochinolin-1,2-dicarboximide (**5 a** und **5 b**)

In 15 ml Chloroform suspendierte man 1 g (2.9 mmol) des Isochinolinium-bromids 1 und gab unter Rühren 0.5 g N-Phenyl-maleinimid 3 (2.9 mmol) sowie 0.3 g (3 mmol) Triethylamin dazu. Nach 24 h Stehenlassen bei Raumtemp. oder 2 h Rühren bei Siedetemperatur wurde eingedampft und der Rückstand in Methanol aufgenommen. Die Lösung wurde wenige Minuten gerührt und abgesaugt. Nach Umkristallisation aus Methanol wurden 0.6g (73%) *endo*-Addukt **5a** erhalten, Schmp. 158 °C. IR (KBr): 2920, 1800 (CH), 1690 (C=O), 1605 (C=C), 1250-1195, 1120 (C-O-C) cm⁻¹.

Die methanolische Mutterlauge wurde 24 h bei Raumtemp. stehengelassen. Nach dem Absaugen erhielt man 0.2 g (45%) *exo*-Addukt **5b**, Schmp. 178 °C (Zers.). IR (KBr): 2910, 1810 (CH), 1680 (C=O), 1600 (C=C), 1270-1220, 1190 (C-O-C) cm⁻¹.

Das nach dem Eindampfen des Reaktionsgemisches erhaltene Isomerengemisch kann auch mittels Niederdruck-Säulenchromatographie (Säule: $14.5 \text{ mm} \times 0.40 \text{ m}$, Kieselgel 60 mesh, Fa. Merck; Fließmittel: *tert*. Butylether/Dichlorethan, 1:3) getrennt werden (R_f von **5a**: 0.68, R_f von **5b**: 0.58, Kieselgel 60 F₂₅₄, Merck).

 $C_{24}H_{24}N_2O_6$ (436.5). Ber. C 66,05, H 5.54, N 6.42. **5a**: Gef. C 66.23, H 5.45, N 6.48. **5b**: Gef. C 65.89, H 5.33, N 6.51.

Isomere N-Methyldicarboximide (6 a und 6 b)

In 15 ml Chloroform wurden 0.7 g (2.0 mmol) 1 suspendiert und unter Rühren 0.3 g (2.2 mmol) 2-Chlor-N-methyl-succinimid [12] sowie 0.5 g (5.0 mmol) Triethylamin gegeben. Die Aufarbeitung erfolgte analog 5 a, b.

endo-Addukt **6a**: 0.3 g (61%), Schmp. 167 °C. IR (KBr): 2920, 2805 (CH), 1685 (C=O), 1605 (C=C), 1280-1195, 1120, 1120 (C-O-C) cm⁻¹. $R_f = 0.54$.

exo-Addukt **6b**: 0.1 g (38%), Schmp. 176 °C. IR (KBr): 2915, 2810 (CH), 1680 (C=O), 1600 (C=C), 1260-1190, 1110 (C-O-C) cm⁻¹. $R_f = 0.35$.

 $C_{19}H_{22}N_2O_6$ (374.4). Ber. C 60.95, H 5.92, N 7.48. 6a: Gef. C 61.21, H 5.78, N 7.32. 6b: Gef. C 60.76, H 6.06, N 7.53.

Literatur

- [1] Grigg R., Donegan G., Gunaratne H. Q. N., Kennedy D. A., Malone J. F., Sridharan V., Thianpatanagul S. (1989) Tetrahedron 45: 1746, und dort zitierte Literatur
- [2] Tsuge O., Kanemasa Sh., Takenaka Sh. (1985) Bull. Chem. Soc. Jpn. 58: 3137
- [3] Tóth G., Janke F., Bende Z., Weber L., Simon K. (1983) J. Chem. Soc., Perkin Trans. I, 1983: 1961
- [4] Bende Z., Tőke L., Weber L., Tóth G., Janke F., Csonka G. (1984) Tetrahedron 40: 369
- [5] Tóth G., Vedres A., Duddeck H., Szántay Cs. (1982) Acta Chim. Acad. Sci. Hung. 109: 149
- [6] Janke F., Himmelreich U., Tóth G., Tischer T., Kádas I., Bende Z., Tőke L. (1989) J. Heterocyclic Chem. (im Druck)
- [7] Tischer T., Tőke L., Tóth G. (1989) Acta Chim. Acad. Hung. (im Druck)
- [8] Bax A. (1984) J. Magn. Reson. 57: 314
- [9] Jippo T., Kamo O., Nagayama K. J. (1984) J. Magn. Reson. 66: 344
- [10] Hricovii M., Liptaj T. (1989) Magn. Reson. Chem. 27
- [11] Kalinowski H.-O., Berger S., Braun S. (1984) ¹³C-NMR-Spektroskopie. G Thieme, Stuttgart-New York, S. 475-490
- [12] Bayer AG (1978) (Erf. W. Jakob, K.-H. Meyer), D. B. P 27 20 311 (09. Nov. 1978); Chem. Abstr. (1979) 90: P 71777c

Eingegangen 13. Dezember 1989. Angenommen 8. Januar 1990